Etkinlik Örnekleri,yıllık,günlük,ders,plan,proje,performans,ödev,ödevleri,değerlendirme,form,egzersiz,sınıf,eğitim ve öğretime dair herşey
Sayfalar
12 Mayıs 2024 Pazar
Denklemler ve Eşitsizlikler Ders Notları
Gerçek Sayı Aralıkları
Konu Özeti
Gerçek sayı aralıkları matematikte sıklıkla kullanılan gösterimleri içermektedir. Gerçek sayılarda herhangi bir aralık belirtmek için 6 farklı yöntem vardır. Bunlar sırasıyla; kapalı aralık, açık aralık, yarı açık (yarı kapalı) aralık, üstten sınırsız aralık, alttan sınırsız aralık ve "R" aralığıdır.
Kapalı Aralık
a ve b birer gerçek sayı olmak üzere, a<b olsun. a ve b sayıları ile bu sayılar arasında kalan tüm gerçek sayılar a, b kapalı aralığını oluştururlar ve bu aralık [a, b] şeklinde gösterilir.
- [a, b]={x | a ≤ x ≤ b, x ∈ R} (Yukarıdaki resimde 1 numaralı grafik)
Açık Aralık
a, b kapalı aralığından a ve b sayıları çıkarılırsa a, b açık aralığı elde edilir ve a, b açık aralığı (a, b) şeklinde gösterilir.
EBOB ve EKOK
Konu Özeti
İki veya daha fazla sayıyı birlikte bölebilen en büyük doğal sayıya bu sayıların en büyük ortak böleni (EBOB) denir. İki veya daha fazla sayının hepsinin birden katı olan en küçük doğal sayıya bu sayıların en küçük ortak katı (EKOK) denir. Bu değerler günlük hayattaki tekrar eden hesaplamalarda kullanılır.
En Büyük Ortak Bölen (EBOB)
İki veya daha fazla sayıyı birlikte bölebilen en büyük doğal sayıya bu sayıların en büyük ortak böleni denir ve EBOB şeklinde gösterilir.
18 ve 24 sayılarının bölenlerini incelersek
- 18 in tam sayı bölenleri: 18→{1, 2, 3, 6, 9, 18} şeklindedir.
Bölünebilme Kuralları
Konu Özeti
Tam sayılarda bölme algoritmalarından yola çıkarak devamında bölünebilme kuralları ve bazı sayılarda bölünebilme koşulları ele alınmıştır. Aynı zamanda asal çarpan ve tam sayı bölenleri de incelenmiştir
Bölme işlemi çarpma işleminin tersi olan aritmetik işlemdir. Bir bütünün istenilen sayı kadar eş parçaya ayrılması temeline dayanır.
Tam Sayılarda Bölme Algoritması
Temel Kavramlar: Sayılar
Konu Özeti
Bir çokluk belirtmek için, rakamların belirli kurallara göre bir araya getirilmesiyle oluşan ifadeye sayı denir. Temel kavramların ele alındığı bu yazıda rakam, sayı ve sayı kümeleri ele alınmıştır. Ayrıca sayı kümelerinin özellikleri anlatılmıştır.
Rakam Nedir?
24 Nisan 2011 Pazar
Birinci dereceden bir bilinmeyenli denklemler
a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere,
ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.
Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.
B. EŞİTLİĞİN ÖZELLİKLERİ